ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Анализаторы количества и показателей качества электрической энергии AR6

Назначение средства измерений

Анализаторы количества и показателей качества электрической энергии AR6 (далее по тексту — анализаторы) предназначены для измерения, вычисления, записи и анализа качественных по ГОСТ Р 51317.4.30-2008 (МЭК 61000-4-30:2008) и количественных параметров напряжения переменного тока, силы переменного тока и других параметров электрической энергии в однофазных, симметричных и несимметричных трехфазных трех, четырех и пятипроводных электрических сетях переменного тока частотой $50\,\Gamma_{\rm II}$.

Описание средства измерений

Принцип действия анализаторов основан на аналого-цифровом преобразовании входных сигналов напряжения и силы переменного тока и их последующей обработке, основанной на быстром преобразовании Фурье.

Анализаторы предназначены для обследования электросетей с целью определения показателей качества электроэнергии, проверки приборов и систем учета, подбора фильтрокомпенсирующего оборудования, обнаружения утечек электроэнергии и неисправностей электрооборудования на предприятиях промышленности и в энергосистемах.

Анализаторы предназначены для автономной работы и работы в составе автоматизированных информационно-измерительных систем.

Анализаторы выполнены в переносном варианте, изолированном корпусе. Управление процессом измерения и вывода данных осуществляется посредством системы меню. Прибор размещен в пластмассовом корпусе, на котором расположены панель оператора и группы разъемов для подключения к измеряемой цепи. Панель оператора состоит из цветного графического ЖК-дисплея и клавиатуры. Клавиатура служит для включения/выключения прибора, выбора режимов измерений, выбора специальных функций при измерениях. Процесс измерения отображается на жидкокристаллическом дисплее в виде цифровых значений результатов измерений, графиков, гистограмм, индикаторов режимов измерений, индикаторов единиц измерений и предупреждающих индикаторов.

Анализаторы имеют слот для карты памяти формата SD, объемом не менее 1 Гбайт, для хранения результатов измерений. Анализатор поддерживает карты памяти формата SD, объемом до 32 Гбайт. Сохраненные результаты могут быть переданы в персональный компьютер с помощью специального программного обеспечения «Power Vision Plus» для среды Windows через интерфейс USB, имеющийся в анализаторе.

Анализаторы имеют группу из пяти входов для измерения характеристик напряжения переменного тока, и группу из пяти потенциальных входов для измерения характеристик силы переменного тока с номинальным среднеквадратичным значением напряжения переменного тока 2 В.

Анализаторы могут использоваться для работы в однофазных, трехфазных, трехпроводных, четырехпроводных и пятипроводных электрических сетях. Измерительные входы напряжений изолированы от остальных частей анализатора.

Номинальная значение первичного измеряемого тока зависит от типа подключаемых токоизмерительных клещей (далее по тексту – датчики тока) и может составлять 5 A, 10 A, 100 A, 200 A, 500 A, 1 кA, 2 кA, 10 кA, 20 кA.

Программное обеспечение

Идентификационные данные программного обеспечения анализаторов приведены в таблице 1.

Системное программное обеспечение (встроенное) реализовано аппаратно и является метрологически значимым. Встроенное программное обеспечение анализаторов может регулярно обновляться пользователем при появлении на сайте производителя новой официальной версии.

Программное обеспечение «Power Vision Plus» (внешнее) устанавливается на персональный компьютер и предназначено для передачи и анализа зарегистрированной анализатором информации. Подключение анализатора к персональному компьютеру происходит через интерфейс USB.

Таблица 1

Наименование программного обеспечения	Идентификацион- ное наименование программного обеспечения	Номер версии (идентификаци- онный номер программного обеспечения)	Цифровой идентифи- катор программного обеспечения (кон- трольная сумма ис- полняемого кода)	Алгоритм вычисления цифрового идентификатора программного обеспечения
Встроенное	Upgrade	не ниже 2.6.1	FC59D59ED08B4989 318BC9060F729684	md5
Внешнее	PowerVision Plus	не ниже 1.2	EDE0C47C28C8341D B7CE1E3C84B9C0CE	md5

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений – «А» в соответствии с МИ 3286-2010.

Внешний вид анализатора представлена на рисунке 1

Рисунок 1 – Внешний вид и схема пломбирования от несанкционированного доступа

Метрологические и технические характеристики

Номинальное значение фазного напряжения переменного тока $U_{\text{ном}}$ может принимать значения 300 либо 800 В;

Номинальное значение силы переменного тока $I_{\text{ном}}$ может принимать следующие значения: 5 A, 10 A, 100 A, 200 A, 500 A, 1 кA, 2 кA, 10 кA, 20 кA.

Диапазоны измеряемых величин, а также пределы допускаемых основных погрешностей

измерений приведены в таблице 2.

Метрологические характеристики нормированы с учетом влияния программного обеспечения.

Таблица 2

Таблица 2		
Измеряемый параметр	Диапазон измерений	Пределы допускаемой основной погрешности (абсолютной D ; относительной d , %)
1 Действующее значение напряжения переменного тока U , В	$(0,2-1,5) \% \cdot U_{HOM}$	$\pm 0.5 (\delta) \pm 2 \text{ e.m.p}$
2 Установившееся отклонение напряжения δU_y , %	± 20	± 0,5 (D)
3 Частота переменного тока <i>f</i> , Гц	(45 - 65)	± 0,01 (D)
4 Отклонение частоты $\mathbf{D} f$, Γ ц	± 0,5	± 0,02 (D)
5 Коэффициент искажения синусоидальности напряжения K_U , %	$(10-120) \% \cdot U_{HOM}$	± 0,5 (D)
6 Коэффициент n-ой (от 2 до 50) гармонической составляющей напряжения $K_{U(n)}$, %	$(10-120) \% \cdot U_{HOM}$	± 0,5 (D)
7 Коэффициент несимметрии напряжений по обратной последовательности K_{2U} , %	0-20	± 0,5 (D)
8 Коэффициент несимметрии напряжений по нулевой последовательности K_{0U} , %	0-20	± 0,5 (D)
9 Длительность провала напряжения $D t_n$, с	0,01 – 60	± 0,01 (D)
10 Длительность временного перенапряжения $D t_{nep}$, с	0,01 – 60	± 0,01 (D)
11 Глубина провала напряжения δU_n , %	10 – 100	± 0,5 (D)
12 Величина временного перенапряжения $\delta U_{nep},\%$	100 – 120	± 0,5 (D)
13 Кратковременная доза фликера P_{st}	0,2 – 10	± 0,2 (D)
14 Длительная доза фликера P_{tt}	0,2-10	$\pm 0.2 (D)$
15 Действующее значение силы переменного тока I , A^*	$(10-120) \% \cdot I_{HOM}$	\pm 0,5 (δ) \pm 2 e.м.p
16 Коэффициент искажения синусоидальности кривой тока K_I , %	$(10-120) \% \cdot I_{HOM}$	$\pm 0,5 (\delta)$
17 Коэффициент n-ой (от 2 до 50) гармонической составляющей тока $K_{I(n)}$, %	$(10-120) \% \cdot I_{HOM}$	± 0,5 (δ)
18 Активная мощность Р , Вт*	$(10-120) \% \cdot I_{HOM};$ $(10-120) \% \cdot U_{HOM}$	$\pm 0.5 (\delta) \pm 4 \text{e.m.p}$
19 Реактивная мощность Q , вар *	$(10-120) \% \cdot I_{HOM};$ $(10-120) \% \cdot U_{HOM}$	$\pm 0.5 (\delta) \pm 4 \text{ e.m.p}$
20 Полная мощность W , $B \cdot A^*$	$(10-120)\% \cdot I_{HOM};$ $(10-120)\% \cdot U_{HOM};$	$\pm 0.5 (\delta) \pm 4 \text{ e.m.p}$
21 Активная энергия W_A , к B т·ч*	$(10-120)\% \cdot I_{HOM};$ $(10-120)\% \cdot U_{HOM};$	$\pm 0.5 (\delta) \pm 4 \text{ e.m.p}$

		Пределы	
	Пионором	допускаемой	
Измеряемый параметр	Диапазон	основной погрешности	
	измерений	(абсолютной D;	
		относительной d , %)	
22 Реактивная энергия W_{P} , квар·ч*	$(10-120) \% \cdot I_{HOM};$	105(8) 14025	
	$(10-120)\ \% \cdot U_{\text{HOM}}$	$\pm 0.5 (\delta) \pm 4 \text{e.m.p}$	
23 Коэффициент мощности (соѕ ф)	0,5-1,0	$\pm 0.05 (D)$	
24 Показания хода часов <i>t</i> , с	-	± 0,1 (D)	
25 Коэффициент амплитуды сигнала Crest Factor	1,01,875	$\pm 0,5 (\delta)$	

Примечание:

* - Данные пределы допускаемой основной погрешности указаны с использованием клещей CF-10; при использовании других датчиков тока из комплекта анализатора пределы допускаемой основной погрешности будет вычисляться по формуле $d=1,15\cdot \sqrt{d_V^2+d_{JT}^2}$,

где $d_{\it ЛT}$ - пределы допускаемой основной погрешности используемого датчика тока;

 $d_{\scriptscriptstyle V}$ - пределы допускаемой основной погрешности при измерении действующего значения напряжения переменного тока.

В таблице 3 приведены основные характеристики токоизмерительных клещей поставляемых в комплекте с анализатором, по требованию заказчика.

Разъемные токоизмерительные клещи используются для определения силы переменного тока в однофазных и трехфазных сетях, спроектированные для использования с анализаторами AR6. Датчики тока различаются по конструктивному исполнению и номинальному измеряемому току.

Таблица 3

тиолици з		
Тип датчиков	Диапазон	Пределы допускаемой основной абсолютной погрешности изме-
тока	измерений, А	рения действующего значения силы переменного тока, А
CF-5	0,010,1	$1\% \cdot I_{u_{3M}}$
	0,1 5	$0.5\% \cdot I_{u_{3M}}$
CP-5	0,055	$1\% \cdot I_{u_{3M}}$
CP-100	1100	$0.5\% \cdot I_{u_{3M}}$
CPR-100	1100	$0.7\% \cdot I_{u_{3M}}$
CPR-500	5500	$0.7\% \cdot I_{u_{3M}}$
CPR-1000	101000	$0.7\% \cdot I_{u_{3M}}$
CP-2000/200	1200	$0.5 \% \cdot I_{u_{3M}} \pm 70 \text{ MA}$
	102000	$0.5~\% \cdot oldsymbol{I_{usm}} \pm 100~\mathrm{MA}$
C-FLEX 20000/2000/200	20000/2000/200	1 % · I _{изм}
AM54-flex	100/1000/10000	$0.5\% \cdot I_{u_{3M}}$
AMS14-Flex	1100	$0.5\% \cdot I_{\scriptscriptstyle H3M}$

Входное сопротивление по измерительным входам напряжения анализаторов не менее 10 МОм.

Рабочие условия применения:

- температура окружающего воздуха от 0 до плюс 50 °C;
- относительная влажность воздуха 95 % при температуре окружающего воздуха плюс 30 °C;

Электропитание анализаторов осуществляется через блок питания, подключенного к электрической сети переменного напряжения с действующим значением от 100 до 240 В и частотой сети от 50 до 60 Гц, выходное напряжение постоянного тока, поступающее на анализатор с блока питания 12 В.

Мощность, потребляемая анализаторами не более 30 B·A.

Время установления рабочего режима не более 5 мин.

Анализаторы обеспечивают непрерывный режим работы без ограничения длительности.

Средняя наработка на отказ не менее 45000 ч.

Средний срок службы не менее 10 лет.

Габаритные размеры (высота × ширина × глубина) анализатора не более:

 $-(283 \times 168 \times 80)$ MM;

Масса анализатора не более: 1,64 кг.

Сопротивление изоляции между корпусом и электрическими цепями приборов:

- не менее 20 МОм в нормальных условиях применения;
- не менее 5 МОм при температуре окружающего воздуха плюс 30 °C и относительной влажности воздуха 90 %.

Знак утверждения типа

Знак утверждения типа наносят на лицевую панель анализаторов методом шелкографии, на титульные листы паспорта и руководства по эксплуатации типографским способом.

Комплектность средства измерений

Комплект поставки анализаторов приведён в таблице 4.

Таблица 4

No	Наименование	Кол-во
1	Анализатор количества и показателей качества электрической энергии AR6	1
2	Программное обеспечение «Power Vision Plus», интерфейсный USB кабель	1
3	Сетевой адаптер	1
4	Аккумулятор	1
5	Комплект из пяти фазных проводов с зажимами типа «крокодил»	1
6	Карта памяти SD формата, объемом не менее 2 Гб для записи измеряемых параметров	1
7	Датчик тока*	-
8	Руководство по эксплуатации	1
9	Методика поверки	1
10	Паспорт	1
При.	мечание: * - количество и тип датчиков тока определяется при заказе.	

Поверка

осуществляется в соответствии с документом МП 50775-12 «Анализаторы количества и показателей качества электрической энергии AR6. Методика поверки», утверждённым ГЦИ СИ ФГУП «ВНИИМС» июне 2012 г. и ГОСТ Р 8.656-2009 «Государственная система обеспечения единства измерений. Средства измерений показателей качества электрической энергии. Методика поверки».

Основные средства поверки и их основные метрологические характеристики приведены в таблице 5.

Таблица 5

Наименование и тип средства поверки	Требуемые характеристики
Наименование и тип средства поверки Калибратор переменного тока «Ресурс-К2»	Требуемые характеристики Диапазон воспроизведения напряжения от $0.01 \cdot U_{\text{ном}}$ до $1.5 \cdot U_{\text{ном}}$ при $U_{\text{ном}}$ равном 220 и 57,7 В, относительная погрешность $\pm (0.03 + 0.01 \cdot (U_{\text{ном}}/U - 1))$ %; Диапазон воспроизведения частоты от 42,5 до 57,5 Гц, абсолютная погрешность ± 0.003 Гц Диапазон воспроизведения коэффициента искажения синусоидальности кривой напряжения от 0,1 до 30 %, абсолютная погрешность $\pm ((0.015 + 0.005 \cdot K_U) \cdot U_{\text{ном}}/U)$ Диапазон воспроизведения коэффициентов несимметрии напряжений по обратной и нулевой последовательностям от 0 до 30 %, абсолютная погрешность $\pm 0.05 \cdot K_U$ Диапазон воспроизведения коэффициента n -ой гармонической составляющей напряжения от 0,05 до 30 %, абсолютная погрешность $\pm ((0.01 + 0.005 \cdot K_{U(n)}) \cdot U_{\text{ном}}/U)$ % Диапазон воспроизведения длительности провала напряжения и временного перенапряжения от 0,01 до 60 с, абсолютная погрешность ± 0.003 с Диапазон воспроизведения глубины провала напряжения от 10 до 100 %, абсолютная погрешность $\pm 0.06 \cdot K_U$ Диапазон воспроизведения коэффициента временного перенапряжения от 1,1 до 1,4, абсолютная погрешность $\pm 0.006 \cdot K_U$
	Диапазон воспроизведения кратковременной и длительной доз фликера от 0,2 до 20, относительная погрешность \pm 1,5 % Диапазон коэффициента \boldsymbol{m} -ой интергармонической составляющей напряжения от 0,05 до 30 %, абсолютная погрешность ((0,01 + 0,005· $\boldsymbol{K}_{Uig(\boldsymbol{m})}$)· \boldsymbol{U}_{Hom} / \boldsymbol{U}) %
Радиочасы РЧ-011	Формирование последовательности секундных импульсов, синхронизированных метками шкалы времени UTC (SU), погрешность не более \pm 10 мс

Сведения о методиках (методах) измерений

Сведения приведены в руководстве по эксплуатации на анализаторы количества и показателей качества электрической энергии AR6.

Нормативные и технические документы, устанавливающие требования к анализаторам количества и показателей качества электрической энергии AR6:

- 1. ГОСТ 13109-97 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электричества энергии в системах электроснабжения общего назначения».
- 2. ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».
- 3. ГОСТ Р 8.655-2009 «Государственная система обеспечения единства измерений. Средства измерений показателей качества электрической энергии. Общие технические требования».

- 4. ГОСТ Р 51317.4.30-2008 (МЭК 61000-4-30:2008) «Электрическая энергия. Совместимость технических средств электромагнитная. Методы измерений показателей качества электрической энергии».
- 5. ГОСТ Р 52319-2005 (МЭК 61010-1:2001) «Безопасность электрического оборудования для измерения, управления и лабораторного применения. Часть 1. Общие требования»
- 6. ГОСТ Р 51522-99 «Совместимость технических средств электромагнитная. Электрическое оборудование для измерения, управления и лабораторного применения. Требования и методы испытаний».
 - 7. Техническая документация фирмы изготовителя CIRCUTOR S.A., Испания.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

Фирма CIRCUTOR S.A., Испания

Aдрес:. Vial Sant Jordi s/n – 08232, Viladecavalls (Barcelona)

тел./факс: (+34) 93 745 29 00 / (+34) 93 745 29 14 E-mail: <u>central@circutor.com</u>, <u>http://www.circutor.com</u>

Заявитель

Общество с ограниченной ответственностью «Энерготест»

(ООО «Энерготест»), г. Москва.

Адрес: Российская Федерация, 115280, г. Москва, ул. Автозаводская, 14/23.

тел./факс: 8 (495) 675-22-73 / 8 (495) 679-67-76 E-mail: <u>info@energotest.ru</u>, <u>http://www.energotest.ru</u>

Испытательный центр

Государственный центр испытаний средств измерений Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологической службы» (ГЦИ СИ ФГУП «ВНИИМС»).

Юридический адрес: 119361, г. Москва, ул. Озерная, д. 46.

Тел. 8 (495) 437 55 77; Факс 8 (495) 437 56 66; E-mail: office@vniims.ru.

Номер аттестата аккредитации 30004-08 от 27.06.2008 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

« » 2012	Γ	١.
----------	---	----